General biconvex functions and bivariational inequalities
نویسندگان
چکیده
In this paper, we define and introduce some new concepts of the higher order strongly general biconvex functions involving arbitrary bifunction a function. Some relationships among various have been established. It is shown that parallelogram laws for Banach spaces can be obtained as applications affine functions, which itself an novel application. proved optimality conditions are characterized by class variational inequalities, called bivariational inequality. Auxiliary principle technique used to suggest implicit method solving inequalities. Convergence analysis proposed investigated using pseudo-monotonicity operator. special cases also discussed. Results in paper viewed refinement improvement previously known results.
منابع مشابه
Certain Inequalities for a General Class of Analytic and Bi-univalent Functions
In this work, the subclass of the function class S of analytic and bi-univalent functions is defined and studied in the open unit disc. Estimates for initial coefficients of Taylor- Maclaurin series of bi-univalent functions belonging these class are obtained. By choosing the special values for parameters and functions it is shown that the class reduces to several earlier known classes of analy...
متن کاملBiconvex sets and optimization with biconvex functions: a survey and extensions
The problem of optimizing a biconvex function over a given (bi)convex or compact set frequently occurs in theory as well as in industrial applications, for example, in the field of multifacility location or medical image registration. Thereby, a function f : X×Y → R is called biconvex, if f(x, y) is convex in y for fixed x ∈ X, and f(x, y) is convex in x for fixed y ∈ Y . This paper presents a ...
متن کاملTurán Type Inequalities for General Bessel Functions
In this paper some Turán type inequalities for the general Bessel function, monotonicity and bounds for its logarithmic derivative are derived. Moreover we find the series representation and the relative extrema of the Turánian of general Bessel functions. The key tools in the proofs are the recurrence relations together with some asymptotic relations for Bessel functions.
متن کاملSufficient Inequalities for Univalent Functions
In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.
متن کاملGeneral Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algebra, Control and Optimization
سال: 2023
ISSN: ['2155-3297', '2155-3289']
DOI: https://doi.org/10.3934/naco.2021041